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Adhesion of gas bubbles upon electrode surfaces of a conductimetric cell causes a reduction in the 
effective surface area of the electrodes and hence leads to false estimations of measured conductivities. 
By considering the random dispersal of bubbles on the electrode surfaces, the increase of interelectrode 
resistance due to bubble adhesion is determined as a function of the fractional surface area covered 
by the gas bubbles. An experimental study using an electrolytic tank with electrodes partially covered 
by spherical Styrofoam (insulating) spheres (which simulate the gas bubbles) is carried out. Computed 
results due to the present model and those of other existing models (based on Maxwell's and 
Bruggeman's formulations) are compared with the measured data. 

1. Introduction 

Interelectrode resistance of a conductimetric cell 
is significantly affected by the adhesion of gas/ 
air bubbles upon the electrode surfaces [ 1 ]. 
The problem of bubble adhesion has been found 
to involve principally stationary adherent bubbles 
which appear from gas-evolving electrodes or from 
the gas/air dissolved in the solution. The bubbles 
formed on the electrodes partially insulate the 
surfaces so that the current density at the 
remaining portions of the electrodes is enhanced. 
Further, the reduced surface areas make the cell 
incompatible for measurement ranges of con- 
ductivity for which it was designed [ 1 ]. 

A quantitative assessment of the screening 
effect due to bubbles (more popularly known as 
the bubble-curtain effect) would enable proper 
design of electrodes in telrns of geometrical 
area required and the required extent of increas- 
ing the surface area (or decreasing the current 
density) by coating the electrodes with spongy 
platinum-black. This is especially useful in 
industrial measurements involving on-line monitor- 
ing of conductivity of solutions with excessive 
dissolved gases. 

Presently, a model is proposed to describe the 
variation of  interelectrode resistance as a function 

of the fractional surface area covered by the 
adhering bubbles. This is done by considering the 
random nature of bubble dispersion on the elec- 
trode surfaces; and the cumulative growth of 
resistance with respect to the extent of bubble 
adhesion is characterized on the basis of statisticaI 
principles. Furthermore, an electrolytic tank 
experiment simulating the electrode system 
plus the bubbles is developed. Electrodes with 
bubble-adhesions are simulated by a pair of 
electrodes covered partially by randomly stuck 
Styrofoam (expanded polystyrene foam) spheres. 
The number of spheres determine the fractional 
coverage required; and the measured interetectrode 
conductivity of this simulated cell immersed in 
the electrolytic tank is correlated with the calcu- 
lated results of the theoretical models. 

2. Theoretical formulation 

Recently Vogt [2] proposed a method of estimat- 
ing the incremental ohmic resistance due to bubble 
adhesions at electrodes as a function of the 
fractional surface area masked by the bubbles. 
His relevant expressions are free from uncertain 
parameters such as the pinching factor [3] and 
his formulation is based on the determination of 
the effective conductivity of the mixture (of the 
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bubbles and the solution) existing at the electrode 
surfaces via well-known relations due to Maxwell 
[4] and Bruggeman [5]; and hence the inter- 
electrode resistance is determined by appro- 
priately including the estimated conductivities 
of the bubble-infested region in the relevant 
calculations. The models of Vogt [2] when 
compared with the earlier versions (due to Sides 
and Tobias [3]) have the merit of being free 
from empirical constants (such as the pinching 
factor) and the calculated values also fall in the 
range of results obtained by Sides and Tobias 
[3]. 

However, the analytical models of Vogt [2] 
have two major short-comings, namely, (a) there 
is no experimental evidence to support Vogt's 
models and (b) the formulation being based 
on Maxwetl's or Bruggeman's principles is valid 
only for uniform dispersion of inclusions (bubbles) 
in the dispersed continuum; however, in practice, 
only a random dispersion of gas bubbles would 
exist at the electrodes; and therefore, it becomes 
necessary to seek an alternative method of calcu- 
lating the effective conductivity of the bubble- 
included region by taking account of the chaotic 
nature of bubble dispersion. The relevant approach 
is given as follows. 

The cell arrangement shown in Fig. 1 is con- 
sidered for the purpose of the present analysis. 
In Fig. 1, two electrodes each with a surface 
area of A, are separated by a distance L. A 

- - lectrolyte (KCt. sotution) 

Simulated ~ - - ~ Copper- dadded 
bubble [ - II- " I~ - . ) fibre-gl.ass sheet 

(Styrofoam l - ?  - - -  :~ - - - ]  
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"-1 
( b ) p- - - -  L =4crn - ~  I ~ - -  4 I~--- - -I  
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Fig. 1. (a) Test conductimetric cell with monolayer 
bubble-adhesion upon electrode surfaces; (b) test elec- 
trodes with simulated bubble adhesions. 

monolayer of bubble adhesion is assumed to 
be on each electrode covering a fractional area 
0s. The mean radius of adhering bubbles is taken 
aSRM. The electrolyte in the cell has a con- 
ductivity ~L so that the interelectrode resistance 
under a bubble-free condition is given by, 

R = _ _  
L 

(1) 

With the adhesion of bubbles on the electrode 
surfaces, the modified (enhanced) value of inter- 
electrode resistance may be written as, 

R'  - 4RM + L -- 4R M (2) 
t%A ~LA 

where Ke represents the effective conductivity of 
the bubble-included region (Fig. 1 b) resulting from 
the adhesion of a monolayer of bubbles covering a 
fractional area of 0s upon the electrode surfaces. 
That is, the quantity ~:e represents the effective 
conductivity of the mixture formed by the electro- 
lytic solution and the dispersed bubbles which 
form a volume fraction ~ in the region of adhered 
bubbles (Fig. lb). Hence, the incremental 
resistance due to bubble adhesion is given by, 

1) AR = R ' - - R  =AKL 

or  

(3b  AR 4RM 

The above expression (Equation 3) is the same* 
as the one suggested by Vogt [2] who expressed 
the ratio (nL/ne) in terms of the volume fraction 
of bubbles, namely, q~ on the basis of a mixture 
of the theories of Bruggeman [5] and Maxwell 
[4], appropriately applied to infinitely extended 
dispersing media (electrolytic solutions) with 

* The quantity 4R M in Equation 3 becomes 2R M if 
bubble-adhesion is considered to be on a single electrode 
only [2]. Due to the symmetrical disposition of  the elec- 
trodes and due to the possibility of  bubble-adhesion on 
both  electrodes, two layers (4R M) of  bubbles (one on 
each electrode, Fig. la) are considered here. Hence, the 
value of  normalized incremental resistance remains 
unaltered, if adhesion on either one or both  electrodes 
is considered. 
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uniformly dispersed inclusions (bubbles). Hence 
Vogt [2] proposed the following relations based 
on Bruggemen's [5] and Maxwell's [4] formula- 
tions, respectively: 

and 

K_~e = (1 --  O) 3/2 (4a) 
KL 

KL 2 1 q~ (4b) 

Since the above relations (Equation 4) assume 
uniformly dispersed inclusions, their applicability 
to practical situations (in which the bubbles are 
rather randomly dispersed) becomes questionable 
if the chaotic disposition of  the bubble inclusion 
in the electrolytic solution is considered. Hence, if 
the chaotic aspect of  bubble dispersion is taken 
into account, it becomes necessary to formulate 
a stochastical model to depict the ~e/KL ratio 
and this model is described below. 

3. Effective conductivity of  a mixture  formed  by 
randomly included bubbles in a dispersing liquid 

Considering a conducting liquid (such as an 
electrolytic solution), its effective conductivity 
would decrease when nonconducting (insulating) 
bubbles are included in it. In general, the included 
bubbles form a random volumetric dispersion in 
the dispersing liquid so that the whole medium 
can be regarded as a statistical mixture; and the 
effective conductivity (Ke) of  the medium 
becomes a random variable. Denoting the 
normalized resistivity as x = ~ L/Ke (the normal- 
ization constant KL being the bubble-free electro- 
lytic solution conductivity), the following charac- 
teristics can be attributed to the chaotic state of  
the bubble-included medium. Considering a 
fractional change in ~L/Ke, that is, (dx/x), result- 
ing from a volumetric change (dO) due to bubble- 
inclusions, then dx/x would be proportional to 
dO as well as being functionally dependent on x 
itself. Thus, the fractional value o f x  will vary 
proportionally or logarithmically rather than 
linearly. That is, 

dx 
- o~ dO log (Ke/gL) (5) 

x 

where a is a constant of  proportionality. A 
possible solution of  Equation 5 in the following 
form can be obtained: 

KL 1 
x - - (6) 

e 1 - a ( O )  

where G(0) can be explicitly written as 

G(O) = Ne {exp [-- exp (a0)] + 13} (7) 

Here 13 is a constant of  integration and N e denotes 
the coordination number (that is, the number of  
contacts that a bubble makes with its neighbours). 
As the bubbles are spherical, the value o f N  c is 6. 
The constants cr and/3 in Equation 7 are not 
arbitrary. They can be determined by applying 
two limiting conditions pertaining to the extreme 
values of  0, namely, 1 and 0, as follows. 

From Equation 6, the normalized conductivity 
Ke/Kb can be written as 

K_~_e = 1 -- G(O) (8) 
KL 

and the limiting conditions applicable to Equation 
8 are, 

_Ke = l o r G ( O )  = 0 a t 0  = 0 (9a) 
KL 

and 

~_~e = 0 o r G ( O  ) = latq5 = 1 (9b) 
KL 

On applying these limiting values, a and 13 in 
Equation 7 are determined to be 

1 I 
a = log e log e 1~No)+ ( l /e )  

and 

1 
13 - - 0.3679 (lOb) 

e 

where e is the exponential constant (2.7183). 
With N c = 6, the value of  ~ is -- 0.4678. 

Furthermore,  for a monolayer of  bubbles with 
a thickness equal to the bubble diameter, the 
following relation is valid as indicated by Vogt 

[21: 
2 

O = -20s ( i1 )  



752 S. KISDNASAMY, P. S. NEELAKANTASWAMY 

Hence Equation 7 written in explicit form 
becomes, 

KLK-2-~ = X--6{exp[--exP(3C~0s)] - 1 }  (12) 

Therefore, from Equation 3, the normalized value 
of incremental resistance is obtained as, 

AKL 

4RM 

1 
2 1 _ -- 1 

l--6{exp[--exp-~o~ ] e)(13 ) 0 s  

The above relation (Equation 13) depicts the 
trend of macroscopic state of screening (or the 
curtain effect) being reached by virtue of the ran- 
dom arrangement of the bubbles. Or, in other 
words, Equation 13 formulates the nature of 
cumulative decay of the contiguous area between 
the electrolyte and the electrodes as a function 
of fractional masking by the random bubble 
inclusions. This process being statistical in nature, 
the relevant expressions given by Equations 12 
and 13 intuitively measure the uncertainty or the 
entropy of the chaotic system constituted by the 
random bubble formations. Therefore the 
exponential (or logarithmic) nature of variation 
of the quantities involved is justified [7]. 

4. Experimental studies 

As far as the authors know, there is no published 
experimental data available concerning the 
problem under discussion. The lack of experi- 
mental studies on this subject is due to the 
difficulty of obtaining a controlled amount of 
bubble formation upon the electrodes so that 
the measured electrolytic conductivity can be 
correlated quantitatively with the bubble coverage. 
However, a simulated experiment can be con- 
ducted as detailed below, which closely approxi- 
mates the actual bubble curtain effect. 

On the proposed simulation, an electrolytic 
tank (shown in Fig. 1) was built to hold a standard 
electrolyte (such as an aqueous solution of KC1 
of known conductivity). The electrodes used were 
copper-clad fibre glass sheets 4 cm x 4 cm in size. 
They were mounted in the tank so that the 
electrode surfaces were completely immersed in 
the solution. The interelectrode spacing was 

4 cm. To simulate the bubbles, spheres made 
of Styrofoam (expanded polystyrene foam) and 
of mean diameter 0.61 cm were glued onto the 
electrode surfaces randomly. The number of 
spheres placed on the electrodes was determined 
on the basis of the required fractional area to be 
covered. Thus, considering the dimensions of the 
electrodes and the spheres, eight spheres were 
used to get an area coverage of about 15%; and 
multiples of eight were used to get increased 
percentage coverages up to 90%. Fig. lb depicts 
a sample electrode plate covered randomly by 
a monolayer of the Styrofoam spheres. A pair 
of blank electrodes (without any spheres on their 
surfaces) was also used as a reference depicting 
the bubble-free situation. 

The cell with a pair of test electrodes was 
excited by a constant current a.c. source at audio 
frequencies (Fig. 2) and the impedance across the 
cell was measured precisely. Each measurement 
pertaining to a pair of electrodes was done in a 
short time within which no formation of actual 
bubbles was observed. Measurements on the cell 
were performed at two close frequencies f l  and 
f2, so that from the respective values of measured 
impedances, namely, Z1 and Z2, the interelectrode 
resistance R'  was calculated from the following 
relation obtained by considering the equivalent 
circuit of the cell [7] illustrated in Fig. 2b. (The 
capacitive elements shown in Fig. 2b denote the 
polarization capacitance (Cp) and the interelec- 
trode capacitance (Ce) associated with the cell): 

- R  
- z -R '2 (14) 

Using the measured value of interelectrode 
resistance of the cell R corresponding to the 
measurements with blank electrodes, the incre- 
mental resistance zXR (that is, AR = R '  - -R) 
was determined, and the normalization constant 
(4RM/KLA) was calculated from the known values 
ofR M (mean sphere radius equal to 0.305 cm), 
area of the electrode, A (4 cmx 4 cm) and K L- 
(The value of solution conductivity K 5 was deter- 
mined by a conventional digital conductivity 
meter.) 

For each pair of test electrodes, impedance was 
measured at various audio frequencies (400 Hz, 
1000 Hz, 5000 Hz, 6000 Hz and 7000 Hz). The 
experiment was repeated with electrolytic solu- 
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Fig. 2. (a) Cell-excitation by a constant 
current source; (b) equivalent circuit of  the 
cell; R = interelectrode cell resistance under 
bubble-free condition; Rp = polarization 
capacitance; C e = interelectrode capacitance. 

tions of two different solute concentrations 
having conductivities (KL) equal to 30 and 34.5 
mS cm -1 . 

Mean values and the spread of the measured 
data on the incremental resistance (normalized) 
are indicated in Fig. 3 along with the theoretical 
results of the models due to Vogt [2]. Compared 
results in respect of the model developed in the 
present work are also shown in Fig. 3. 

5. Discussion 

The following inferences can be made on the basis 
of the results obtained in the present investi- 
gations: 

(a) referring to Fig. 3, the experimental results 
closely agree with the theoretical model proposed 
indicating the validity of  the analytical formula- 
tion 
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Fig. 3. Normalized incremental 
resistance of  the cell due to bubble 
adhesion vs fractional surface covered 
by the bubbles: theoretical models of  
Maxwell, Bruggeman, Sides and 
Tobias and due to,  the present 
method,  q) = experimental data from 
the simulated cell. 
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(b) the model presented here yields results 
which fall within the range o f  results given by 
Sides and Tobias [3] to an acceptable extent 

(c) as experimentation with actual bubbles 
is not possible (due to the difficulty of  getting 
bubble formations covering the electrode surfaces 
to a known extent), the present simulation tech- 
nique offers solution for the measurement of  the 
curtain effect. The measured results were con- 
sistent over different measurement frequencies 
and also for different electrolytic conductivities 

(d) the analytical expressions of  the present 
method are in closed form and are also free from 
any uncertain or empirical parameters such as 
the prinching factor [3] 

(e) Bruggeman's [5] or Maxwells' [4] formu- 
lations are normally applicable to uniform arrange- 
ment or dispersion of  inclusions in a continuum. 
For random dispersion o f  inclusions, these model 
would show deviations for high volume fractions 
(q~); this could be inferred from relevant results 
on mixture permittivity formulae derived on 
the basis of  Bruggeman's or Maxwells' method. 
Hence, the present method is more appropriate 
in view of  the chaotic disorder involved in the 
dispersal o f  bubbles 

(f) the results presented here indicate a 
logarithmic law of  variation which is compatible 
with the random mixture law proposed by 
Lichtenecker and Rother [7] 

(g) the present model is analogous to a cumu- 
lative growth of  conductivity model developed by 
the authors in respect of  powder solids [8] 

(h) the method given here can also be extended 
to study the capacitive effects o f  bubble-curtains. 
Relevant time-domain studies on this aspect are 
in progress. 
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